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The linear stability of a shear layer of an inviscid compressible fluid is considered. 
It is shown that there is instability of two-dimensional disturbances a t  all values 
of the Machnumber, contrary to previous results for a vortex sheet. The difference 
arises from the discovery of a second unstable mode. This mode is supersonic, 
decays weakly with distance from the shear layer, and is not governed by the 
principle of exchange of stabilities. Detailed numerical and asymptotic results 
are given for the hyperbolic-tangent shear layer. 

1. Introduction 
I n  1970 Blumen found an analytical neutral curve and computed some stability 

characteristics for a smoothly varying shear layer of an inviscid perfect gas a t  
uniform temperature. Only two-dimensional subsonic disturbances were con- 
sidered and instability was shown to exist for 0 < M < 1, where the Mach number 
Jl is based upon half the velocity difference across the shear layer. This is con- 
sistent with a classical argument attributed to Ackeret (by Liepmann & Puckett 
1947, pp. 240-241), according to which the shear layer should be unstable only 
when M < 1. However, Drazin & Howard (1966, pp. 48-49,57-58) had pointed 
out an apparent contradiction between this heuristic physical argument of 
Ackeret and some calculations of Landau (1  944) and Hatanaka (1947), who found 
the criterion for instability of a vortex sheet to two-dimensional waves to be 
1M < 24. 

I n  this paper we shall resolve these apparent contradictions, showing that there 
is a second mode of instability of a smoothly varying shear layer of compressible 
fluid, that the curve of marginal stability is not as Blumen (1970) drew it, that 
the heuristic physical argument of Ackeret leads to a false conclusion, and that, 
indeed, the shear layer is unstable to two-dimensional waves at each value of 
the Mach number. The argument of Ackeret may be wrong because it applies the 
theory of steady flow to unsteady disturbances. The stability characteristics of a 
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smoothly varying shear layer will be found to be much more intricate than was 
previously envisaged. The occurrence of the second mode is associated with a 
breakdown in the validity of t’he principle of exchange of stabilities. 

This classical problem is of wider significance than its aeronautical origin. It 
has received attention recently because of the relevance of the stability of com- 
pressible flow to  the generation of aerodynamic noise (see, for example, Howe 
1970). Our results suggest that  workers on aerodynamic noise should treat 
with caution models with vortex sheets, because the properties of long waves on 
smoothly varying shear layers differ significantly from those of waves on a dis- 
continuous vortex sheet. 

The mathematical intricacies of our solution are of more than technical signifi- 
cimce also because similar intricacies occur in many stability problems with rota- 
tion or stratification rather than compressibility. Dicbinson & Clare (1  973) 
studied a problem of barotropic stability of incompressible fluid, for which they 
discovered a second mode of instability and an abrupt change in the direction of 
the curve of marginal stability, thereby revising the previous picture of the mar- 
ginal curve. Huppert (1973) pointed out similar abrupt changes in marginal 
curves for flows of stratified incompressible fluid, and showed that the established 
formula for perturbation of neutral curves was sometimes invalid. Indeed, the 
apparent contradiction between the stability characteristics of a smoothly 
varying shear layer and a vortex sheet seem to  recur for a stratified incompres- 
sible fluid (Drazin 1958; Drazin & Howard 1966, p. 46). Also Blumen (1975) has 
considered the stability to long waves of a non-planar shear layer in a vertically 
stratified incompressible fluid, for which we now suspect difficulties similar to 
those resolved in this paper. We believe that the ideas which we apply below to 
the stability of a shear layer in compressible fluid may, with suitable modificrL- 
tions, be applied to these other stability problems. 

In  this paper we shall treat only two-dimensional disturbances. Now Squire’s 
transformation reduces the effective Mach number of a three-dimensional wave 
disturbance by a factor of the cosine of the angle the wave makes with the plane 
of the basic flow in giving the equivalent two-dimensional wave (Dunn & Lin 
1952; Fejer & Miles 1963). Thus, in particular, a wave nearly perpendicular to the 
plane of compressible flow is equivalent to  a two-dimensional incompressible wave, 
because the effective basic velocity is small. It follows that if a given flow is 
unstable to two-dimensional waves a t  zero Mach number, it is unstable to three- 
dimensional waves a t  each value of the Mach number. However, the criterion 
for stability of two-dimensional compressible waves determines, by Squire’s 
transformation, the direction of unstable three-dimensional waves, an important 
matter to those who live or work near an airport. 

I n  $2  we shall state the stability problem already posed. I n  $ 3  we shall sum- 
marize our numerical results, giving pictures of the marginal curve of stability. 
Many of these results are substantiated in $ 4 by asymptotic formulae, which give 
perturbations of the neutral curve and the long-wave approximation. These 
numerical and analytical results are related and discussed in the final section. 
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2. The eigenvalue problem 

stability of the basic unbounded plane parallel flow with velocity 
First we shall state the problem attacked by Blumen (1970). We consider the 

u =  U(y)i  for - co<y<ao  ( 1 )  

of an inviscid perfect gas a t  uniform temperature. Then i t  follows (cf. Blumen 
1970) that tlie stability of normal modes is governed by the equation 

{ p ' / W (  u - c)2}' + a2{ 1 - l/M2( ci - c)2}p = 0 ( 2 )  

p+O as y - t i - m .  (3)  

and the boundary conditions 

Here we use dimensionless variables throughout, so that we may identify tlie 
Mach number M as the reciprocal of the speed of sound. The disturbance is sup- 
posed to be adiabatic, and its pressure to have the form p(y) exp {ia(x - ct)} in 
terms of the positive wavenumber CL and the complex velocity c = c,  + ic i .  Primes 
denote differentiations with respect to y. (The boundary conditions (3) should be 
replaced by radiation conditions for neutrally stable modes (ci = 0), but this will 
not be necessary here because we shall treat only unstable (ci > 0) and marginally 
stable (as c, J. 0) modes.) 

Blumen (1970) considered the shear layer with 

U = tanhy (4) 

c = 0, a2+JP = I ,  p = (sechy)a2. ( 5 )  

and discovered the neutral eigensolution 

He concluded that this was a marginal eigensolution, with instability if and only 
if a2 + &I2 < 1. However, we shall show that there is instability just outside part 
of this circle in the a, M plane. 

For the vortex sheet with 
U = + l  f o r y Z 0  (6) 

and uniform basic temperature, Landau (1944) and Hatanaka (1947) found an 
eigensolution which gives 

( 7 )  1 c2 = 1 + 3 1 - 2 -  N - 2 (  1 + 41112)h = ci, 
p = ( C T  1)2exp[Ta{1-MZ(cT 1)2}ay] for yzo. 

say, 

There is also a degenerate solution with 

c = 0, 1 M 2  2 1, p = exp{-ia(M2- i)Jy}. (8) 

Note that solution (7 )  gives the criterion &I2 > 2 for stability of two-dimensional 
waves. Also, when M2= 1 the long-wave limit of Blumen's solution ( 5 )  as 
a + 0 is not solution (7 ) ,  but (8). 
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Ci 

0.00 
0.01 
0.03 
0.05 
0.07 
0.09 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

M 
1.4142 
1.4140 
1.4123 
1.4089 
1.4039 
1.3971 
1.3932 
1.3324 
1.2377 
1.1174 
0.9798 
0.8319 
0.6778 
0.5174 
0.3406 
0~0000 

Cr 

0.00 
0.05 
0.10 
0.15 
0.20 
0-25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.00 
0.70 
0.80 
0.90 
1.00 

M 
1.4142 
1.4195 
1.4356 
1.4630 
1.5023 
1.5549 
1.6225 
1.7075 
1.8133 
1.9401 
2.1082 
2-5769 
3.3848 
5-0308 
9.9861 
a2 

TABLE 1. Unstable eigenvalues ci and stable eigenvalues cr for the 
vortex sheet given by (7)  

3. Numerical results 
If the variable q = qr + iqi = p’/p and the transformation z = tanh y are intro- 

duced, (2) reduces to the form q’ = f(z, q )  in - 1 < z < 1.  The functional form of 
f(z, q ) ,  together with the appropriate boundary conditions, has been presented by 
Blumen (1970). As before, the shooting method was applied to solve this two- 
point boundary-value problem for the complex wave speed c(a,  M ) .  A step size 
A: = 0.01 was used to provide greater accuracy in the delineation of c than was 
previously obtained. Moreover, a complex quadratic interpolation scheme 
speeded up the rate of convergence to the correct eigenvalues. 

Figures 1-4 display the distribution of the eigenvalues c in the a, M plane. 
Figures 5(a )  and ( b )  are enlargements of parts of the a, M plane that enhance 
detail not clearly depicted in the previous diagrams. Note that the isolines of 
lower values of ci in figures 2 and 5 (b)  cross isolines of higher values of ci near 
Jlr = 2;: (a + 0) before each isoline intersects the M axis. The values of ci along 
the ill axis are then in agreement with the vortex-sheet solution given by (7) and 
displayed in table 1 

Blurnen assumed that a2 + M 2  = 1 was a neutral-stability curve in 0 < a < 1. 
Consequently, only the stationary unstable eigenvalues up to about M = 0-9 were 
computed, under the assumption that ci -+ 0 as M2 + 1 -a*. As noted in the 
introduction, the present extension was undertaken in order to resolve the dis- 
crepancy between these previous computations and the known stability charac- 
teristics of the vortex sheet. The present computations, in conjunction with the 
asymptotic formulae presented in 3 4, have resolved the apparent discrepancy 
noted above. Moreover, two travelling unstable modes not delineated by the 
vortex-sheet solution were also discovered. The unstable eigenvalues associated 
with these latter solutions are shown in figures 3 and 4. These diagrams were 
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FIWRE 1 .  The unstable region in tlie a, M plane for t.he hyperbolic-tangent velocity pro- 
file. The tliirk solid lines, labelled ci = 0, are curves of marginal stability. A stationary 
stable mode (ci = 0) also exists along tho thick dashed line that extends into the unstable 
region. The thin solid lines depict isolines of the imaginary part ci of the complex phase 
speec! . 
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FIGCRE 2. Imaginary phase speeds ci in the unstable region of the a, M plane 
where ci is double valued. 

constructed for c, > 0 but there is a corresponding mode, not shown, with c, < 0. 
The stability boundary emanating from the curve a2 + &I2 = 1 seems to  extend 
to &/ = m. ,Also, this stability boundary is not an exact representation. It was 
constructed from computations for ci w 5 x 10-3, essentially the lowest value that 
could be determined by the present numerical technique. 
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FIGURE 3. Real phase speeds c, in the unstable region of the a, A 1  plane. 

a 

1 .o 1.2 2f 1.6 1.8 2.0 
AI 

FIGURE 4. Iinagiriary phase speeds c, in the unstable region of the 
a, AI plane where c, .i. 0. 

Eigenfunction and Reynolds-stress computations in the region a? + N 8  < 1 
have been presented by Blumen (1970). The eigenfunctions associated with both 
stationary modes (c, = 0) in the region a2 + ill2 > 1 are very similar in form to 
those interior to the quarter-circle and are not given here. The eigenfunctions 
associated with the travelling modes do not exhibit the symmetry properties 
associated with the stationary modes. The change in form that occurs is clearly 
exhibited by the initial Reynolds-stress distribution appearing in figure 6. The 
Reynolds stress averaged over one wavelength is denoted by 7 = - Re u Re v, 
where expressions for the (z, y) velocity components (u, v) have been present,ed 
by Blumen (1970, equations 40 and 41). The computations of 7 along 111 = 1.11 
show that 7 is a symmetric function of y when c, = 0 (a  = 0.06, 0.07). In  the 
region where travelling modes exist (a 2 0.072) the distribution of 7 becomes 
increasingly asymmetric as the neutral-stability boundary is approached, tend- 
ing towards a discontinuous change in 7 near the origin. 

It is known (Lin 1953) for a general velocity profile that, in the limit as c, + 0, T 

is piecewise constant between critical layers where U ( y )  = c. For our monotone 
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FIGURE 5. Enlargements of parts of the unstable region in the a, M plane. The mmginal- 
stability curve is denoted by ci = 0. ---, isolines of ci in the region where the unstable 
waves are stationary (c, = 0) ; - -, isolines of ci where c, + 0 ; * .  . * . . , isoline c, = 0.1. 
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T 

Y 
FIGURE 6. Reynolds stress 7 as a function of y, along M = 1.14. 

for indicated values of wavenuniber a. 

profile (4) there is only one critical layer. For the stationary modes, with c,  = 0, 
the critical layer is a t  y = 0; further, in the limit as ci  -+ 0 we see that p -+ 0 as 
y + rf: 00; therefore r -+ 0 as ci + 0 for fixed y + 0. For the travelling modes, 
with c, + 0, the critical layer is a t  y = tanh-'c; further, in the limit as ci  -+ 0 
we see that p -+ 0 as y + (sgn cr) 00 but that  p merely satisfies a radiation condition 
as y + - (sgn c,)co ; therefore r is a non-zero constant on the radiating side of 
the critical layer and T = 0 on the other. These results provide a check on the 
accuracy of the numerical results as the stability boundary is approached. 

4. Perturbation formulae 
Perturbation of a known eigensolution 

Let us suppose that somehow we know that the eigensolution 

c = c,, a2 = a$, M 2  = M i ,  p = po(y)  (9) 

satisfies the problem (2) with (3) for some given function U(y). To perturb this 
cigensolut,ion, suppose that c = co + Sc is an eigenvalue when 

01' = + Sa2, M 2  = Mg + SM', (10) 

for infinitesimals &a2 and ISM'. Then, assuming that the perturbation is a regular 
one, we deduce (e.g. following the Tollmien-Lin method described by Drazin 
8: Howard 1966, p. 13) that  

6c = II/IO, ( 1 1 )  
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where the integrals I, and Il are defined by 
m 

I, = 2f ( U  - co)-3 (ph2 + agp;) dy,  
-a 

m 
Il = 1 {a~6M2+6a2[Mi-  (U-c0)-2])pgdy. 

- m  

Iii some special cases formula (11) is equivalent to formula (67) of Lin (1953). 

(5).  First we readily deduce that 
I, = Baini, 

on taking the limit as ci 4 0 to resolve the singularity in the usual way. Similarly, 
we find 

For the hyperbolic-tangent profile (4 ) ,  we take the known solution (9) to be 

Il = s1 { a p M 2 + f W [ M ; -  U--2])(1- U2)+1dU 

= (a~6~2+~;6a2)nrtr(ag)/r(a~+&) +w [ 2 +  s'1[1- (1 - u2)":-'] U-2dU 

-1 

= a;n:r(ag) (w+w)/r(a;++), 
and hence that, when 6c; > 0, 

Formula (14) agrees with the result of the Tollmien-Lin formula for incom- 
pressible fluidwith M i  = 0, a; = 1 and 6M2 = 0 (cf. Drazin & Howard 1966, p. 42). 
It agrees well also with our numerical results of Q 3 when a,, is greater than about 
0.4, in view of the limitations of the formula (when 6a2 and 6M2 are not infinitesi- 
mal) and of the numerical results (when &a2 and 6M2 are so small that (2) is nearly 
singular). However, formula (14) gives instability just inside, but not outside, the 
circle a2 + M 2  = 1, in contradiction with our numerical results when a is less than 
about 0-37. This contradiction is reminiscent of one found by Huppert (1973) in 
comparing Howard's perturbation formula with direct numerical results for 
stability of a stratified incompressible fluid. The explanation of this apparent 
contradiction is not clear, but may be due to the fact that 6c depends upon Sa2 
and SM2 transcendentally, not linearly as we assumed in our derivation of formula 
(14). If 6c were to depend upon 6a2 and 6M2 algebraically, but not linearly, one 
mould expect the integral I, to vanish (Banks & Drazin 1973, $ 5 ) .  

The long-wave approximation 

Gill & Drazin (1965) applied methods developed by Drazin & Howard (1966) to 
the solution of the problem (2) with (3) for small a. Their results may be extended 
further, and here it suffices to state the new results we wish to use, without dwell- 
ing upon their derivation. 

If there exist U*, = lim U ( y ) ,  then the eigenfunctions of the problem ( 2 )  with 
u+* m 

(3) can be expressed in the form 
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where h‘i are some constants, 1; = 1 - iIP(U*, - c ) ~ ,  and the roots 1% are chosen 
such that Relk > 0 or such that Relf = 0 and the radiation conditions at  
infinity are satisfied. Further we may take the expansion 

where 
P&I) = P&) + aP+,(y) + aBPh2(y) + . .. as a --f 0 ,  (16) 

[(U, - c ) - ~  - (U*m - c)-,] dy,) dyl, (1 7c)  

etc. Then it can be shown that expansion of the eigenvalue relation gives 

+ 1- + a ( som [( u - c ) - 2 -  (U, -c)-”ddy 
(Urn - C)Z ( U L  - c)2 

For jets, formula (18) agrees with formula (4) of Gill & Drazin (1965)) who went 
on to find the stability characterist,ics of long waves. 

For our hyperbolic-tangent shear layer (4), i t  can be shown to give 

(1 + ~ ) 2 { ( 1  - M2( 1 - ~ ) 2 ) h  + (1 - C ) Z {  1 - JP(i + c)Z} - 2a[{i- 13P( I - ~ ) “ : ‘ t .  

x (1 - M y  1 + C)2}f + 1 +clog {(c + l ) / (c  - l)}] + . . . = 0. (19) 

Ignoring the terins in powers of a, we recover the eigensolution ( 7 )  for a vortex 
sheet, which gives c = ? ct,, say. Using formula (19) to perturb these values, we 
find a t  length that 

2+c,log{(c,+ 1)/(c,,- I,} { 1 - J!2( 1 - cL‘)”-& c = c,. + a d ’  + + O(a2) 
1 - c ,  1 + 4M2 - 3( 1 + 4W)6 

as a --f 0 for fixed J P  $: 2. (20) 
This gives unstable modes with 

. l + c ,  2 i c,. [log (( 1 + C J (  1 - c,)} -nil c = c,.+za- {M2(1-Cu)2- l}* + O(a2) 
1 -ql 1 + 4 M 2 -  3( 1 + 4M2)& 

as a --f 0 for fixed M2 > 2. (21) 

Formula (21) shows that the modes with c = c, (or c = -ell, similarly) are stable 
for a = 0 but unstable for small positive a. Thus there is instability just above the 
M axis for M 2  > 2, and hence there is no critical value of the Mach number 
above which two-dimensional waves are stable. 

Ensuring again that the square-roots in formula (1 9) have non-negative real 
parts, we can find a second unstable mode, for which we have 

(22) c N i a M 2 ( N 2 -  l)a/(2- A P )  as a --f 0 for 1 < M 2  < 2; 
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this corresponds to the Blumen solution (5) in the limit as 01 -+ 0 and to the de- 
generate solution (8) for the vortex sheet. Using formula (19) to investigate the 
stability characteristics when both 01 and M 2 -  2 are small, we find that for 
unstable modes 

6 c 3 + ( 2 - M 2 ) c - 2 i a  = 0 ( 0 1 ~ , c ( 2 - M ~ ) ~ )  as a+ 0, M 2 +  2. (23)  

This cubic approximation gives two admissible unstable roots c and one in- 
admissible stable root. The two unstable roots are pure imaginary, c = ici, 
when M2 < 2 - 3( Ga2)f, but complex, c = -t c, + ici, when iV2 > 2 - 3( 6a2)3. 
Formulae ( 2 2 )  and ( 2 3 )  agree well with the numerical results of $3.  

5.  Discussion 
We have found that the hyperbolic-tangent shear layer is unstable to two- 

dimensional disturbances at each value of the Mach number, however large. 
This follows from an asymptotic formula and was confirmed numerically. It is 
plausible that this result is typical of smoothly varying shear layers. It is contrary 
to earlier results found for the discontinuous vortex sheet, and so casts doubt on 
tlhe physical value of models which incorporate a vortex sheet. 

The difference between stability characteristics of long waves on the shear 
layer and those on the vortex sheet is chiefly due to the occurrence of a second 
mode for the shear layer which is degenerate for the vortex sheet. This second 
mode has been elucidated by our asymptotic and numerical analysis, it being 
seen to occur chiefly when the Mach number is greater than one. Also the principle 
of exchange of stabilities was found to be invalid where this second mode occurs, 
although it is valid for the vortex sheet. 

Our computations show that the relative growth rate aci of the second mode is 
always small, typically one order of magnitude less than that of the first mode 
(see figure 2). However, the spatial as well as the temporal growth of a mode 
is important in practice. Now (2) has solutions which behave like 

p N constant x exp [ - a(I - M2( 1 T c)2}tl yI] as y + -t 00. 

Thus a neutral mode which is subsonic relative to the basic flow a t  infinit,y decays 
exponentially with distance I y( from the shear layer, but one which is supersonic 
does not decay a t  all. In  fact a neutral mode which is supersonic relative to the 
basic flow a t  infinity radiates outwards like a sound wave, unattenuated in this 
two-dimensional model. The unstable supersonic modes do decay exponentially 
with 1 y 1 ,  but much more slowly than the subsonic modes. It follows that the 
second mode, though of slow temporal growth, is likely to be of greater amplitude 
than the first mode far away from the shear layer whose instability generates the 
modes. 

I n  fact each supersonic mode is found to be like a sound wave, with velocity 
- + 41-l relative to the basic stream, whose velocity approaches f 1 as y + & 00; 
t,hus c = 1 T M-l+o(M-l) as M -+ 00. This is consistent with Lin’s (1953)  
deduction that each neutral mode is not supersonic relative t o  either stream. 

This discussion warns against the thoughtless use of vortex sheets, although 
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they have the great advantage of mat'hematical simplicity. Whether in aero- 
dynamic noise theory or in physically distinct but mathematically analogous 
fields such as shallow-water waves, it  may be undesirable to use a model which 
renders degenerate an important physical class of modes. 
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